II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

CONTROL SYSTEMS ENGINEERING

(ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks	
	UNIT-I					
1	a)	Write the differential equations governing the behavior of the mechanical system shown in Figure 1 and obtain an equivalent electrical circuit based on force-voltage analogy.	L3	CO1 CO3	7 M	
	b)	Figure 1 Determine the transfer function for the block diagram shown in Figure 2. figure 2 Figure 2 Figure 1	L3	CO1 CO3	7 M	

OR						
2	a)	Define positive feedback and negative	L2	CO1	7 M	
		feedback in control systems. Discuss the		CO3		
		advantages of using negative feedback in				
		control systems. How does negative feedback				
	• `	contribute to system stability and performance?		<u> </u>		
	b)	Determine the transfer function of the system	L3	CO1	7 M	
		shown in Figure 3 using Mason's Gain		CO3		
		formula.				
		R G1 2/G2 3 G3 1/G6 5 G7 6 G8 7 8 C				
		-H1				
		Figure 3				
		τιντή τι				
3	2)	UNIT-II For the following unit step response of second-	13	CO1	8 M	
5	<i>a)</i>		LJ	CO1 CO2	0 111	
		order system find damping ratio, natural		02		
		frequency, peak overshoot, settling time,				
		rise time, and peak time.				
		C(s) 16				
		$\frac{C(s)}{R(s)} = \frac{16}{s^2 + 3s + 16}$				
	b)	Define steady-state error in control systems.	L2	CO1	6 M	
		Discuss the factors that influence steady-state		CO2		
		error and how it can be minimized.				
	OR					

4	a) b)	For the following unit step response of second order system determine damping ratio, Natural frequency, peak overshoot, settling time, rise time, and peak time. $\frac{C(s)}{R(s)} = \frac{36}{(s^2 + 2s + 36)}$ Compare and contrast the effects of different types of controllers (P, PI, PD, and PID).	L3 L3	CO1 CO2 CO1 CO2	8 M 6 M			
	UNIT-III							
5	a)		L3	CO1 CO5	7 M			
	b)	Sketch the root locus plot of a unity feedback system with the open loop transfer function. $G(s) = \frac{K}{s(s+2)(s+4)}$	L4	CO1 CO3	7 M			
	1	OR ÓR		1 1				
6	a)	Using Routh Hurvitz stability criterion, Determine the range of <i>K</i> for stability for the following closed-loop transfer function. $\frac{C(s)}{R(s)} = \frac{K}{s(s^2 + s + 1)(s + 2) + K}$	L3	CO1 CO5	7 M			
	b)	Sketch the root locus for the unity feedback system. $G(s) = \frac{K}{s(s+5)(s+10)}$	L4	CO1 CO3	7 M			
	UNIT-IV							
7	a)	Explain about gain crossover frequency and phase cross over frequency.	L2	CO1 CO4	4 M			

	• 、			~ ~ 4	1035
	b)	Sketch the Bode plot for the following system.	L4	CO1	10 M
		$C(x) H(x) = \frac{100(S+1)}{100(S+1)}$		CO4	
		$G(s) H(s) = \frac{100(S+1)}{(S+10)(S+100)}$			
		OR			
8	a)	Explain the frequency domain specifications.	L2	CO1	4 M
				CO4	
	b)	Sketch the polar plot for the following system.	L4	CO1	10 M
		$G(s)H(s) = \frac{2000(S+1)}{S(S+10)(S+40)}$		CO4	
		$G(S)H(S) = \frac{1}{S(S+10)(S+40)}$			
	1	UNIT-V	r		
9	a)	Distinguish between transfer function model	L3	CO1	7 M
		and state space model.		CO5	
	b)	Obtain the transfer function for the system	L3	CO1	7 M
		described below.		CO5	
		$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$			
		$y = \begin{bmatrix} 8 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$			
		OR			
10	a)	What is the significance of controllability and	L3	CO1	4 M
		observability in the design of control systems?		CO5	
	b)		L3	CO1	10 M
		system whose transfer function is given by		CO5	
		$G(s) = \frac{(S+2)}{S(s^2+4s+3)}$			
		$G(s) = \frac{1}{S(s^2 + 4s + 3)}$			